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EXPONENTIAL STABILIZATION OF NON-LINEAR STOCHASTIC SYSTEMS* 

V.A. UGRINOVSKII 

We consider the stabilization of non-linear systems whose parameters are 
subjected to "white noise". For stochastic systems with non-linear 
feedback, we derive sufficient (frequency-domain) conditions of exponential 
stabilization by a controller that uses information about the system 
output (incomplete System state information). The problem of the 
stabilization of linear stochastic systems has been studied in some detail 
/l-3/. Yet for non-linear stochastic systems we only have general 
theorems that reduce the stabilization problem to finding a stochastic 
Lyapunov function /4, 5/. 

In this paper, we derive sufficient conditions of exponential 
stabilization by methods of the theory of absolute stochastic stability. 
The advantages of these methods are well-known: the specific Lyapunov 
function is not required, and its existence in the class of functions 
'quadratic form plus integrals over non-linearities" is easily checked 
/6/. The latest results of this theory for stochastic systems /7/ make 
it possible to solve the stabilization problem for a wide class of non- 
linear systems with parametric disturbances. 

1. Formulation of the problem. We consider a controllable dynamic systemdescribed 
by Ito's differential equation 

t' = (A, + ZA,w,‘) t + (b, + Zb,w,') U A 
(90 + X9lW,') cp (c). c = v+z 

(1.1) 

Here z is the n-dimensional state vector, u is the d-dimensional control vector, a is 
the l-dimensional vector of observed variables, m is the m-dimensional vector function 
describing the non-linear feedback or allowing for other non-linear effects in the system, 

AJ. bJ, qJ (I - 0, 1, . . .I s) are appropriately dimensioned constant matrices, and 
s) are independent standard Wiener processes; 

t”J (j = i, . . ., 

here and henceforth, summation is over j from 
j=i to j = s, unless otherwise stated. 

The class of admissible non-linear functions g(u) is described in accordance with the 
general theory of absolute stability /6/. Let 

F, (U,s,g~,$) = U*TU + 2U*p'# + v*L%' - z/J*&p 

fJ = diag IA,AJ+I, AJ = V+ (Ap + q@). i = 1, . . ., s 

(1.2) 

The symbol diagI.1 is the vector formed from the main diagonal elements of the matrix 
in brackets: jJ (j = i, . . ., s) are l-dimensional vectors, and 9 is an m-dimensional vector. 
The real matrices r = r*, p, g = g l , fJ are 1 x 1, 1 X m, m X m, 1 X m respectively. We assums 
that the matrix 8 satisfies the following conditions: a) it is non-zero only when V+bJ = 0 

for all j = 1, . . . . s; b) if condition a) holds, then the element 9 t, of the matrix 8 may be 
non-zero only if 'pi is a continuously differentiable function of a single variable Us the 
k-th component of the vector (1. 

We assume that the non-linearity cp satisfies the condition 

l Prlkl.Matem.Mekhan.,52,1,16-24.1988 
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p, ((J, J’, ‘( (a). ‘c’ (0)) . . . 0, ” = v*Lr. ‘(1 (0) :-- 0 

(cp’ (0) is the vector whose i-th component is equal to dqlldak if Uk[ # 0 or 0 If II,, 
Moreover, let the (m X 1) matrix p be such that if &,f 0, then pi/ 0 for j#ii. 
1. and let the linear function ~0 satisfy the inequality (1.3) and the function 'I: have 
property 

20,i~rci(g)dE.~e,,ri,n'. UrFR 
0 

(1.B) 

- II). 

1’. j-. 
the 

The class of admissible non-linearities consists 
that satisfy (1.3) and (1.4). 

of all the continuous functions 

(1.4) 

'L (0) 

We consider the problem of exponential stabilization (in mean square /l-4/ or with 
probability 1 /4, 5/J of the non-linear system (1.1) with admissible non-linearity (f when the 
information about the state J is incomplete and only the output u is observable. 

In what follows, we solve this problem using the controller 

z: : (A, .t c/+v*) I - b,u -i- C (u - v’z). u .- K*z (1.5) 

(z is a n-dimensional vector and K,C are constant n X tl and n x 1 matrices, respectively). 
Thecontoller (1.5) was used in /l, 2/ to stabilize the linear system (we call it system 

A) obtained from (1.1) by substituting ($J= pu. It clearly belongs to the class of systems 
considered in this paper. The assumption that the controller (1.5) exponentially stabilizes 
the system A in mean square is central to our analysis. This assumption can be checked for 
given K.C using the results of /l, 2/, which also enable us to choose "optimal" values of 
these parameters. The system A is essentially a linear comparison system for the class of 
non-linear system (1.1). 

2. Sufficient conditions of stabilization. We will now give the general con- 
ditionswhenthe controller (1.5) exponentially stabilizes system (1.1). 

Let e-t-z. Subtracting the first relation in (1.5) term by term from (1.11, substi- 
tuting the second relation from (1.5), and setting z-'; 2--e, we obtain an equation in the 
unknown e. 

E’ - (A, + qOpv* - Cv* - Z5,K*u*,‘) E - q&u + (2.1) 

(2 (A, + bjK*) =,I’) z + (qo + r*rjW/‘) ‘P (‘J) 

Eqs.(l.l), (2.1) form a closed non-linear system of stochastic equations of the form 

(2.2) 

Exponential stabilization of system (1.1) by the controller (1.5) is equivalent to 
global stability of the equilibrium of the Ito Eq.(2.2). The theory of global absolute 
stability for equations of the form (2.2) was developed in /7/*. Theorem 1 below follows 
from this theory as it applies to our particular problem. In order to state the theorem, we 
will need the following notation . 

R ==qrq*, Q = qp + &*$A G = g +8+q*D0 +&*$ 

F(y, v) = y*Ry + 2y*Qv + r+Gv, ye Ran, vf R" 
(2.3) 

Let y(t) be a path of the equation 

y' = (B, + zB,w;) y + (Do + zD,u,') v(t), Y (0) = 0 (2.4) 

which is obtained from (2.2) by cutting the non-linear feedback loop D = cp(~). As a result, 
we obtain a linear system (2.4) controlled by the stochastic process v(t). The set of 
admissible controls V consists of v (*) satisfying the following conditions: 

a) the process v(t) and the corresponding solution of problem (2.41, Y (t) # are con- 
sistentwiththe streamof u-algebrasinducedby the Wiener processes w,(t)(j = 1, . . .,s), t > 0 /4/; 

*See also Brusin V.A. and Ugrinovskii V-A., Stability of stationary motions of systems with 
parametric disturbances, Preprint 220, Gor'kii: NIFU?I (1986). 
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b) the following inequalities hold (E is the expectation symbol): 

Theorem 1. Assume that the controller (1.5) mean-square exponentially stabilizes the 
linear system A and, moreover, there is e>O such that 

ETF(YW. o(L))dt~e~EIu(t)I*dl, VVFV 
; ” 

Then this controller also mean-square exponentially stabilizes system (1.1). 
This assertion follows directly from the exponential stability theorem (see the work 

cited in the footnote), which claims that under our assumptions the function 

is a stochastic Lyapunov function for ~q.(2.2). The existence of a Lyapunov function of this 
form also ensures exponential stabilization of (1.1) with probability 1 (see Theorem 5.8.1 
/4/): 

15 (t)I Q const.e-*, 1 e (t)) < const.e+ (3y > 0) (2.6) 

The constant in (2.6) is almost surely finite and is determined by the initial value 
z (O), z (0). (Lyapunov-type theorems of stabilization with probability 1 are also given in /5/). 

Theorem 1 covers a wide class of controllable dynamic systems with parametric disturbance. 
As we show below, special estimates of the integral on the left-hand side of (2.5) can be 
used to obtain frequency-domain stabilization conditions from Theorem 1. 

3. Stabilization of a system with interference in the feedback loop. 
Consider a system of the form 

I' = AOz + b,,u + (qO I q,wI’) ‘F (u), u = v*z (3.1) 

0 Q 'p (a) (7 <ho', 'p' > 0 (3.2) 

(the output u and the function cp are both scalar, 1 = m = i). 
The frequency-domain corollary of Theorem 1 is obtained in three stages. In the first 

stage, we choose a linear comparison system of the form of the system A with its stabilizing 
controller (1.5). As the comparison system, we take the linear system obtained from (3.1) 
by substituting cp = ho (this function satisfies conditions (3.2)), 

z' = (A, -I- q,,hv’ + q,hv’w,‘) .z + bu, u = v*x (3.3) 

The stabilizability of this system by the controller (1.5) (with the parameter p equal 
to h) is equivalent to exponential stability of the trivial solution of the linear equation 

y' = Py + hD,uw,', u = 'IQ. P = B,(h) + ADon* (3.4) 

An algebraic criterion of mean-square stability for Eq.(3.4) is given in /8/. The 
controller parameters K, C should be chosen from this criterion. The matrix P, and also 

A0 + q&v* + boK+, A0 -I- q&v* - Cv*are necessarily Hurwitz matrices. Let K,C be such that 
B,(h) is also a Hurwitz matrix. As we will see below, these assumptions add nothing new to 
our previous assumptions: the location of the spectrum of the matrix B, to the left of the 
imaginary axis is a necessary condition for stabilization by the controller (1.5) of system 
(3.1) with cp E 0 contained in the class of systems that we seek to stabilize. 

In the second stage, we describe the class of admissible non-linearities (3.2) by 
inequalities of the form (1.3), (1.4). Any function cp satisfying (3.2) obviously satisfies 
the inequalities 

(3.5) 

for any 820. 
We can now formulate a frequency-domain condition which ensures that inequality (2.5) 
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holds. This is the third and final stage in deriving the "frequency-domain" stabilization 
theorem. 

Let 

xj (h) :=: (Al - &J'Dj. xj (k) :- q*xj (a.), j -- 0. 1 

Theorem 2. Assume that the triple of matrices (A,, b,,, V) is controllable and observable; 
the parameter p is equal to h, and the matrices h'.C are chosen so that the controller (1.5) 
exponentially stabilizes the linear system (3.3) in mean square; the eigenvalues ofthematrix 
U, for these parameter values lie to the left of the imaginary axis. For some 8 :'O. F 1;. 0, 
let 

l/h - 2/V - lie (1 -- ZC(O~I) x,, (in) ;; c:, vo c.: (- 00. -k W) (3.6) 

(the number fi is defined by (3.7) below). 
Then the controller (1.5) with these p, K,C exponentially stabilizes system (3.1) (in 

mean square and with probability 1 in the sense of (2.6)) with any function ~(a) satisfying 
condition (3.2). 

Proof. If we cut the non-linear feedback loop in system (3.1), (2.1), we obtain a linear 
controllable dynamic system of the form (2.5). 

Y' = &y + D,v -t- D,vw;, u = v (t), y (0) = 0, CT = q*y (t) 

By assumption, if v cc V, then E 1 u 12, E 1 y (t) I*, E 1 u (t)l a are Lebesgue integrable on 
10, fw). Let v (t)* Y Q) I and a(t) vanish for t<o. Then the Fourier-Laplace transforms 

of these processes are related by the identities 

YF (iw) = x0 (ioh (io) t x,(io)J(io), oI; (i0) = 

x0 (h)vF (to) + x1 (iO)J (h) 

J (io) .= 5 o (t) e-‘u’dw, (t) 
0 

(the subscript F denotes the Fourier transform of the corresponding process). These identities 
lead to 

Y (t) 7 Yo (t) + Yl (t) 

y, (t) -= & [ Re x0 (io) vF (io) do, y, (t) = & 1 Re x1 (io) J (io) do 
-m -m 

By (3.5), the coefficients of the quadratic form F (2.3) are given by 

Let 

The integral (3.7) is finite, since the eigenvalues of 
the imaginary axis. From the above representation of Y 0) 
-b-"I 1 Qyl 1’ - B”a 1 v 1' , we obtain the bound 

(3.7) 

the matrix B, lie to the left of 
and the inequality 2y,*Qv > 

s EF (Y (f)v v U)) dt > s EF (~0 (t), v(t)) dt - (3.8) 
0 0 

Cm 

"-I'*$ EIQy,(~)l'dr+B~Elv(l)l'dt]= 

r E (P(Y, (t), v(f)) - W's Iv 19 dt 
0 

(The last equality is based ontheproperties of Ito integrals). Fourier transforming the 
right-hand side of (3.8), using Parseval's equality and inequality (3.6), we obtain the theorem. 
The theorem is proved. 

Theorem 2 applies to monotone arbitrarily rapidly increasing non-linearities. The case 
'p'< d is covered by Theorem 3 (see below) , and positivity of m' is not required. 
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Now let p = 0. The value of the matrix B0 and xl(h), XJ@) (i = O,l), /I are changed accord- 
ingly. 

Theorem 3. Assume that the triple of matrices (Ao, bO, V) is controllable and observable; 
the parameters in the controller (1.5) have been chosen so that 
of the matrices -4, + b&*, A, - 

p = 0, and the eigenvalues 
I%* lie in the complex plane to the left of the imaginary axis. 

For some 0< 0, e> 0, let 

l/h + 8 (vfQl)'d - 28'11 - Re (I - LtoO)X, (io)> e, Vo E Rl (3.9) 

Under these conditions, the controller (1.5) exponentially stabilizes system (3.1). 
Conditions (3.61, (3.9) are analogous to Popov's frequency-domain condition from the 

theory of absolute stability and has the same geometrical interpretation /6/: the hodograph 
of the modified frequency characteristic X = --Rexo(io), Y = --o ImXo (io) lies strictly to 
the right of the Popov line l/h, + X + 20Y = 0. The value of h, is obtained from Theorem 2.3: 

l/h, = l/h - 25% for condition (3.6) 
i/h1 = I/h + 0 (v*qJ*d - 2vl* for condition (3.9) 
This interpretation may be useful in many applications , e.g., when studying the robustness 

of the stabilizability properties to interference (robustness estimates of the stabilization 
system). 

Example . It is required to stabilize the system 

a” + Zcm’ + u = Q. q’ + pv = ‘p (a)(1 + qu’) $ u 
4 > 09 --i < a < 0. B > 0, k < -2a (1 + 243 + 6’) < B 

{3.10) 

with the function q,satisfying inequalities (3.2). 
Given this relationship of the parameters in the uncontrolled system (u EO), all the 

linear systems of this class prove to be unstable. Using Popov's frequency-domain criterion 
/6/, we can show that without interference (q= O), the stabilizing controller for (3.10), 
(3.2) has the form 

01' = Pl + c (0 - Q. PI' + *, + 0, = n, {3.11) 
41’ + Brll = ho, + u. u = ku, 

with appropriately chosen k,c. Thus, for a=-0.2,!3=2,h=0.2 we may take k= 1.68l,c=2. 

Analysis of the closed-loop system (3.10), (3.11) based on Theorem 2 shows that for q<q"=O.77 
the controller (3.11) also exponentially stabilizes system (3.10) both in mean square and with 
probability 1, i.e., the controller (3.11) is robust to "white noise" of intensity not ex- 
ceeding 4". The values of the parameters 13, h, corresponding to this threshold intensity which 
ensure that the frequency-domain condition (3.6) holds are 8= O.G,h,~0.264, 

4. Stabilization of a system with interference in the system and the control 
channel. Let us derive a frequency-domain corollary of Theorem 1 for Ito systems of the form 

r' = (A, + A,u~o,')z + (b, + b,w,')u + qocp(a), u = v+s (4.1) 

with scalar Q and cp; w,, w, are independent scalar standard Wiener processes. We assume that 
v’b, = 0 and that the non-linear function ~(a) has the properties 

Clearly, every function cp satisfying these constraints is contained in the set of 
functions defined by the inequality 

(cp - h,u)(cp - h,u) - 8 (v*A,z)'cp' < 0, 8 > 0 (4.3) 

Following the procedure of Sects.l-3, we take the linear comparison system in the form 

r' = (A, + A++')z -I- (b, + b,w,‘)u, A, = A, + qo/.tv* (4.4) 

which is obtained from (4.1) by substituting cp = po. This substitution satisfies the con- 
ditions (4.3). The parameters of the controller (1.5) stabilizing system (4.4) are chosen 
following the suggestions of /l, 2/. 

In order to derive the frequency-domain corollary of Theorem 1 , we will need an auxiliary 
lemma. 

Let 
p = & (N + @A+, R, = (h, - p)(h, - P) - 60,*rl'l*B, 

Q1 = [-(h, + h,)12 + plq + eP*q, G, = 1 - E + 28 (v'q,), 

O<e<i 

(4.5) 
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Let 11 . 11 be the spectral matrix norm in the space of (in X 2n) matrices induced by the 
Euclidian norm in HZ" /9/, and let the spectrum of the matrix P lie in the region he i. --?. 
a > 0 and (I e*p (Pf)ll<p exp (--at), p ,> 0. 

We know /9/ that the matrix equations 

I'*H,, -I- HJ' :- Y-Q&*, y > 0 

P*T, -i- T,I' -- -B,*N,B, - B,*H,Bz - H, 

P*Tk :- T,P = --H,*Tk_,B, - B?*Tk_,fl,, k ,;: 1 

have unique synnnetric solutions H,,, T,, k 0. where H, < 0 since Q,Q,* ‘2 0 and 
since R, ,& 0. 

Lemma. Let p = p2 (II R, 112 t- II N? II*)!%. Under the above assumptions, the equation 

P*H :- HP .,- 6 (B,*HB, ?- f&H&) = -B,+H,B, - B,'H,B, - R, 

has a unique solution H = H * < 0 which is representable in series form as 

II -4 T, + T,6 + T,F + . 

The series is convergent in the circle 16 I< i/p. 

Proof. The fact that the series (4.9) satisfies (4.8) can be checked by direct 

(43) 

(4.i) 

T, C; 0 

(4.8) 

(4.9) 

substi- 
tution. Convergence ofthe series (4.9) in any norm is equivalent to the convergence of the 
numerical series 

/y, T,y, <y. T,y,D -- (y. T,yM - 

We may take IyI : 1. The radius of convergence of the last series is r= l/limI(y, T~Y>*‘~ 
as k - '-:-CO. BY the bound I Y* TRY I < @“’ il TO II , we have r > I$, which it was required to prove. 

NOW let H be the solution of Eq.(4.8), M- -P*H- HP, M < 0, x0 (h) = 0.1 - P)-'D,. 
x (h) ‘1*x0 (A), x, (1) = (Al - P)_'B, (i = t, 2). 

Theorem 4. Let the triple of matrices (A,. b,. v) be controllable and observable; let 
the parameters ofthecontroller (1.5) be such that it stabilizes the system (4.4). Let @,y 
be the numbers from the leurna; y,;, 0 and 1 2. l.!y, ( l//3; a> 0 is such that 

1 - y .- (1 : VI) Iie x0* (io)Mx, (io) - Re 01, + h, - (4.10) 
211 -- 2ioqx (io) _:.- E, VW cg (-co, -+cu) 

Under these conditions, the controller (1.5) stabilizes the non-linear system (4.1) with 
an arbitrary non-linearity satisfying (4.2). 

Proof. A necessary condition for stabilization of system (4.4) by the controller (1.5) 
isthatthe eigenvalues of the matrix P (4.5) are located so that Re Ai < --a @a> 0). Then 
for some p > 0, II exp (WI1 =G P ew (-4. 

Substituting vl*V-p(r, we reduce Eq.(2.4) to the form 

y' = Py + D,v, + (B,w,' -i- B,w,')y, u = q+y, y (0) = 0 

Processes satisfying this equation have Fourier-Laplace transforms related by the identity 
(since v, .? V) 

By the assumptions of the theorem, for 6 = I + i/y,, thesolution of Eq.(4.8) exists and 
the series (4.9) converges. Generalizing the technique of /lo/, we can show that 

~Ey*Mydt&$’ f xO*(i~)MxO(io) E [VIP (fo)Isdo + 

o (I++)! -- Ey+(B,"HB, + B,HB,)ydt 
0 

B,*Ho&) Y) dt + -&- 1 E )~1~(i0)l*Re 2x,(io)Q,du 
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(In /lo/ an Ito system with deterministic control is considered. In our case, W(im) funda- 
mentally depends on the processes 4, 4. which rules out direct application of the technique 
Of /lO/). 

Constructing from (4.3) the quadratic formF and substituting u,= v- pa, we obtain 

F (Y, v) = y+R,y + WQ,v, + c, I ~1 I* + E I LJ I’ = F, (v, vJ + e I v I* 
where e is the number from (4.10), the matrices R, Q,, G, are defined by (4.5). From the 
preceding bounds and condition (4.10), we obtain 

r EF,(y, v,)dt>O, Vu, E V 
0 

Therefore, condition (2.5) of Theorem 1 is satisfied. By Theorem 1, controller (1.5) 
stabilizes system (4.1), (4.2). 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 
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I wish to thank V.A. Brusin for suggesting the problem and for useful comments. 
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